Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Nat Prod ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575516

RESUMEN

We report on the use of nitric oxide-mediated transcriptional activation (NOMETA) as an innovative means to detect and access new classes of microbial natural products encoded within silent biosynthetic gene clusters. A small library of termite nest- and mangrove-derived fungi and actinomyces was subjected to cultivation profiling using a miniaturized 24-well format approach (MATRIX) in the presence and absence of nitric oxide, with the resulting metabolomes subjected to comparative chemical analysis using UPLC-DAD and GNPS molecular networking. This strategy prompted study of Talaromyces sp. CMB-TN6F and Coccidiodes sp. CMB-TN39F, leading to discovery of the triterpene glycoside pullenvalenes A-D (1-4), featuring an unprecedented triterpene carbon skeleton and rare 6-O-methyl-N-acetyl-d-glucosaminyl glycoside residues. Structure elucidation of 1-4 was achieved by a combination of detailed spectroscopic analysis, chemical degradation, derivatization and synthesis, and biosynthetic considerations.

2.
J Nat Prod ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517947

RESUMEN

Investigation of the secondary metabolites of Streptomyces virginiae CMB-CA091 isolated from the quartz-rich (tepui) soil of a cave in Venezuela yielded two new dimeric phenazine glycosides, tepuazines A and B (1 and 2); three new monomeric phenazine glycosides, tepuazines C-E (3-5); and a series of known analogues, baraphenazine G (6), phenazinolin D (7), izumiphenazine C (8), 4-methylaminobenzoyl-l-rhamnopyranoside (9), and 2-acetamidophenol (10). Structures were assigned to 1-10 on the basis of detailed spectroscopic analysis and biosynthetic considerations, with 1 and 2 featuring a rare 2-oxabicyclo[3.3.1]nonane-like ring C/D bridge shared with only a handful of known Streptomyces natural products. We propose a plausible convergent biosynthetic relationship linking all known members of this structure class that provides a rationale for the observed ring C/D configuration.

3.
J Colloid Interface Sci ; 663: 43-52, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38387185

RESUMEN

Peptide-based vaccines can trigger highly specific immune responses, although peptides alone are usually unable to confer strong humoral or cellular immunity. Consequently, peptide antigens are administered with immunostimulatory adjuvants, but only a few are safe and effective for human use. To overcome this obstacle, herein a peptide antigen was lipidated to effectively anchor it to liposomes and emulsion. A peptide antigen B cell epitope from Group A Streptococcus M protein was conjugated to a universal T helper epitope, the pan DR-biding epitope (PADRE), alongside a lipidic moiety cholesterol. Compared to a free peptide antigen, the lipidated version (LP1) adopted a helical conformation and self-assembled into small nanoparticles. Surprisingly, LP1 alone induced the same or higher antibody titers than liposomes or emulsion-based formulations. In addition, antibodies produced by mice immunized with LP1 were more opsonic than those induced by administering the antigen with incomplete Freund's adjuvant. No side effects were observed in the immunized mice and no excessive inflammatory immune responses were detected. Overall, this study demonstrated how simple conjugation of cholesterol to a peptide antigen can produce a safe and efficacious vaccine against Group A Streptococcus - the leading cause of superficial infections and the bacteria responsible for deadly post-infection autoimmune disorders.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas , Ratones , Humanos , Animales , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Lipopéptidos/farmacología , Lipopéptidos/química , Liposomas , Emulsiones , Epítopos , Streptococcus
4.
Vaccines (Basel) ; 12(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400181

RESUMEN

Mucosal vaccines are highly attractive due to high patient compliance and their suitability for mass immunizations. However, all currently licensed mucosal vaccines are composed of attenuated/inactive whole microbes, which are associated with a variety of safety concerns. In contrast, modern subunit vaccines use minimal pathogenic components (antigens) that are safe but typically poorly immunogenic when delivered via mucosal administration. In this study, we demonstrated the utility of various functional polymer-based nanostructures as vaccine carriers. A Group A Streptococcus (GAS)-derived peptide antigen (PJ8) was selected in light of the recent global spread of invasive GAS infection. The vaccine candidates were prepared by either conjugation or physical mixing of PJ8 with rod-, sphere-, worm-, and tadpole-shaped polymeric nanoparticles. The roles of nanoparticle shape and antigen conjugation in vaccine immunogenicity were demonstrated through the comparison of three distinct immunization pathways (subcutaneous, intranasal, and oral). No additional adjuvant or carrier was required to induce bactericidal immune responses even upon oral vaccine administration.

5.
Antibiotics (Basel) ; 13(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38247656

RESUMEN

The Australian roadside soil-derived fungus Penicillium shearii CMB-STF067 was prioritized for chemical investigation based on an SDA cultivation extract exhibiting both antibacterial properties and natural products with unprecedented molecular formulae (GNPS). Subsequent miniaturized 24-well plate cultivation profiling (MATRIX) identified red rice as optimal for the production of the target chemistry, with scaled-up cultivation, extraction and fractionation yielding four new xanthone-anthraquinone heterodimers, jugiones A-D (1-4), whose structures were assigned by detailed spectroscopic analysis and biosynthetic considerations. Of note, where 1-2 and 4 were active against the Gram-positive bacteria vancomycin-resistant Enterococcus faecalis (IC50 2.6-3.9 µM) and multiple-drug-resistant clinical isolates of Staphylococcus aureus (IC50 1.8-6.4 µM), and inactive against the Gram-negative bacteria Escherichia coli (IC50 > 30 µM), the closely related analog 3 exhibited no antibacterial properties (IC50 > 30 µM). Furthermore, where 1 was cytotoxic to human carcinoma (IC50 9.0-9.8 µM) and fungal (IC50 4.1 µM) cells, 2 and 4 displayed no such cytotoxicity (IC50 > 30 µM), revealing an informative structure activity relationship (SAR). We also extended the SAR study to other known compounds of this heterodimer class, which showed that the modification of ring G can reduce or eliminate the cytotoxicity while retaining the antibacterial activity.

7.
Mar Drugs ; 21(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37755100

RESUMEN

Application of a miniaturized 24-well plate system for cultivation profiling (MATRIX) permitted optimization of the cultivation conditions for the marine-derived fungus Talaromyces sp. CMB-TU011, facilitating access to the rare cycloheptapeptide talarolide A (1) along with three new analogues, B-D (2-4). Detailed spectroscopic analysis supported by Marfey's analysis methodology was refined to resolve N-Me-l-Ala from N-Me-d-Ala, l-allo-Ile from l-Ile and l-Leu, and partial and total syntheses of 2, and permitted unambiguous assignment of structures for 1 (revised) and 2-4. Consideration of diagnostic ROESY correlations for the hydroxamates 1 and 3-4, and a calculated solution structure for 1, revealed how cross-ring H-bonding to the hydroxamate moiety influences (defines/stabilizes) the cyclic peptide conformation. Such knowledge draws attention to the prospect that hydroxamates may be used as molecular bridges to access new cyclic peptide conformations, offering the prospect of new biological properties, including enhanced oral bioavailability.

8.
ACS Infect Dis ; 9(8): 1570-1581, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37489053

RESUMEN

Untreated group A Streptococcus (GAS) can lead to a range of life-threatening diseases, including rheumatic heart disease. To date, no therapeutic or prophylactic vaccines are commercially available to treat or prevent GAS infection. Development of a peptide-based subunit vaccine offers a promising solution, negating the safety issues of live-attenuated or inactive vaccines. Subunit vaccines administer small peptide fragments (antigens), which are typically poorly immunogenic. Therefore, these peptide antigens require formulation with an immune stimulant and/or vaccine delivery platform to improve their immunogenicity. We investigated polyelectrolyte complexes (PECs) and polymer-coated liposomes as self-adjuvanting delivery vehicles for a GAS B cell peptide epitope conjugated to a universal T-helper epitope and a synthetic toll-like receptor 2-targeting moiety lipid core peptide-1 (LCP-1). A structure-activity relationship of cationic PEC vaccines containing different external PEI-coatings (poly(ethylenimine); 10 kDa PEI, 25 kDa PEI, and a synthetic mannose-functionalized 25 kDa PEI) formed vaccines PEC-1, PEC-2, and PEC-3, respectively. All three PEC vaccines induced J8-specific systemic immunoglobulin G (IgG) antibodies when administered intranasally to female BALB/c mice without the use of additional adjuvants. Interestingly, PEC-3 induced the highest antibody titers among all tested vaccines, with the ability to effectively opsonize two clinically isolated GAS strains. A comparative study of PEC-2 and PEC-3 with liposome-based delivery systems was performed subcutaneously. LCP-1 was incorporated into a liposome formulation (DPPC, DPPG and cholesterol), and the liposomes were externally coated with PEI (25 kDa; Lip-2) or mannosylated PEI (25 kDa; Lip-3). All liposome vaccines induced stronger humoral immune responses compared to their PEC counterparts. Notably, sera of mice immunized with Lip-2 and Lip-3 produced significantly higher opsonic activity against clinically isolated GAS strains compared to the positive control, P25-J8 emulsified with the commercial adjuvant, complete Freund's adjuvant (CFA). This study highlights the capability of a PEI-liposome system to act as a self-adjuvanting vehicle for the delivery of GAS peptide antigens and protection against GAS infection.


Asunto(s)
Infecciones Estreptocócicas , Vacunas Estreptocócicas , Femenino , Animales , Ratones , Liposomas/farmacología , Polietileneimina , Streptococcus pyogenes , Péptidos/farmacología , Adyuvantes Inmunológicos/química , Infecciones Estreptocócicas/prevención & control , Epítopos/farmacología
9.
Vaccines (Basel) ; 11(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36851183

RESUMEN

Intranasal vaccine administration can overcome the disadvantages of injectable vaccines and present greater efficiency for mass immunization. However, the development of intranasal vaccines is challenged by poor mucosal immunogenicity of antigens and the limited availability of mucosal adjuvants. Here, we examined a number of self-adjuvanting liposomal systems for intranasal delivery of lipopeptide vaccine against group A Streptococcus (GAS). Among them, two liposome formulations bearing lipidated cell-penetrating peptide KALA and a new lipidated chitosan derivative (oleoyl-quaternized chitosan, OTMC) stimulated high systemic antibody titers in outbred mice. The antibodies were fully functional and were able to kill GAS bacteria. Importantly, OTMC was far more effective at stimulating antibody production than the classical immune-stimulating trimethyl chitosan formulation. In a simple physical mixture, OTMC also enhanced the immune responses of the tested vaccine, without the need for a liposome delivery system. The adjuvanting capacity of OTMC was further confirmed by its ability to stimulate cytokine production by dendritic cells. Thus, we discovered a new immune stimulant with promising properties for mucosal vaccine development.

10.
J Nat Prod ; 86(3): 508-516, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36662567

RESUMEN

Fungal indole diterpenes (IDTs) occupy a valuable region of bioactive natural product chemical space, displaying potent and selective inhibition of therapeutically important ion channels and with potential application in the treatment of glaucoma, cancer, and neurodegenerative diseases, as well as insecticides and antivirals. We have employed an integrated workflow of analytical scale chemical profiling using GNPS (Global Natural Products Social molecular networking) and cultivation profiling (also known as "MATRIX" miniaturized microbioreactor) to detect, prioritize, optimize the production, isolate, characterize, and identify a new series of indole diterpenes, noonindoles G-L (7-12), from an Australian marine-derived fungus, Aspergillus noonimiae CMB-M0339. The first reported examples of IDT glycosides, the molecular structures for 7-12, were assigned on the basis of detailed spectroscopic analysis and biosynthetic considerations.


Asunto(s)
Productos Biológicos , Diterpenos , Glicósidos/farmacología , Australia , Indoles/farmacología , Aspergillus , Estructura Molecular , Productos Biológicos/farmacología , Diterpenos/farmacología , Diterpenos/química
11.
Mar Drugs ; 20(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36355021

RESUMEN

Analytical scale chemical/cultivation profiling prioritized the Australian marine-derived fungus Aspergillus noonimiae CMB-M0339. Subsequent investigation permitted isolation of noonindoles A-F (5-10) and detection of eight minor analogues (i-viii) as new examples of a rare class of indole diterpene (IDT) amino acid conjugate, indicative of an acyl amino acid transferase capable of incorporating a diverse range of amino acid residues. Structures for 5-10 were assigned by detailed spectroscopic and X-ray crystallographic analysis. The metabolites 5-14 exhibited no antibacterial properties against G-ve and G+ve bacteria or the fungus Candida albicans, with the exception of 5 which exhibited moderate antifungal activity.


Asunto(s)
Aminoácidos , Diterpenos , Australia , Diterpenos/farmacología , Candida albicans , Indoles/farmacología , Estructura Molecular , Pruebas de Sensibilidad Microbiana
12.
Pharmaceutics ; 14(10)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36297584

RESUMEN

Peptide-based subunit vaccines include only minimal antigenic determinants, and, therefore, are less likely to induce allergic immune responses and adverse effects compared to traditional vaccines. However, peptides are weakly immunogenic and susceptible to enzymatic degradation when administered on their own. Hence, we designed polyelectrolyte complex (PEC)-based delivery systems to protect peptide antigens from degradation and improve immunogenicity. Lipopeptide (LCP-1) bearing J8 B-cell epitope derived from Group A Streptococcus (GAS) M-protein was selected as the model peptide antigen. In the pilot study, LCP-1 incorporated in alginate/cross-linked polyarginine-J8-based PEC induced high J8-specific IgG antibody titres. The PEC system was then further modified to improve its immune stimulating capability. Of the formulations tested, PEC-4, bearing LCP-1, alginate and cross-linked polylysine, induced the highest antibody titres in BALB/c mice following subcutaneous immunisation. The antibodies produced were more opsonic than those induced by mice immunised with other PECs, and as opsonic as those induced by antigen adjuvanted with powerful complete Freund's adjuvant.

13.
Vaccines (Basel) ; 10(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36016100

RESUMEN

Adjuvants and delivery systems are essential components of vaccines to increase immunogenicity against target antigens, particularly for peptide epitopes (poor immunogens). Emulsions, nanoparticles, and liposomes are commonly used as a delivery system for peptide-based vaccines. A Poly(hydrophobic amino acids) delivery system was previously conjugated to Group A Streptococcus (GAS)-derived peptide epitopes, allowing the conjugates to self-assemble into nanoparticles with self adjuvanting ability. Their hydrophobic amino acid tail also serves as an anchoring moiety for the peptide epitope, enabling it to be integrated into the liposome bilayer, to further boost the immunological responses. Polyleucine-based conjugates were anchored to cationic liposomes using the film hydration method and administered to mice subcutaneously. The polyleucine-peptide conjugate, its liposomal formulation, and simple liposomal encapsulation of GAS peptide epitope induced mucosal (saliva IgG) and systemic (serum IgG, IgG1 and IgG2c) immunity in mice. Polyleucine acted as a potent liposome anchoring portion, which stimulated the production of highly opsonic antibodies. The absence of polyleucine in the liposomal formulation (encapsulated GAS peptide) induced high levels of antibody titers, but with poor opsonic ability against GAS bacteria. However, the liposomal formulation of the conjugated vaccine was no more effective than conjugates alone self-assembled into nanoparticles.

14.
Mar Drugs ; 20(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35736142

RESUMEN

Reconsideration of the spectroscopic data for penipacids A-E, first reported in 2013 as the acyclic amidines 1-5 from the South China deep sea sediment-derived fungus Penicillium paneum SD-44, prompted a total synthesis structure revision as the hydrazones 6-10. This revision strongly supported the proposition that penipacids A-B (6-7) were artifact Schiff base adducts of the cryptic (undetected) natural product N-aminoanthranilic acid (11) with diacetone alcohol, induced by excessive exposure to acetone and methanol under acidic handling conditions. Likewise, the revised structures for penipacids C-D (8-9) and E (10) raise the possibility that they may also be artifact Schiff base adducts of 11 and the media constituents pyruvic acid and furfural, respectively. A review of the natural products literature revealed other Schiff base (hydrazone) natural products that might also be viewed as Schiff base adduct artifacts of 11. Having raised the prospect that 11 is an undetected and reactive cryptic natural product, we went on to establish that 11 is not cytotoxic to a range of bacterial, fungal or mammalian (human) cell types. Instead, when added as a supplement to microbial cultivations, 11 can act as a chemical cue/transcriptional regulator, activating and/or enhancing the yield of biosynthetic gene clusters encoding for other natural product chemical defenses. This study demonstrates the value of challenging the structure and artifact status of natural products, as a window into the hidden world of cryptic and highly reactive natural products.


Asunto(s)
Productos Biológicos , ortoaminobenzoatos , Bacterias/genética , Bacterias/metabolismo , Productos Biológicos/química , Humanos , Familia de Multigenes , Bases de Schiff , Metabolismo Secundario , ortoaminobenzoatos/química
15.
Molecules ; 27(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35630649

RESUMEN

A library of fungi previously recovered from the gastrointestinal tract (GIT) of several fresh, commercially sourced Australian mullet fish was re-profiled for production of a rare class of phenylpropanoid piperazine alkaloids (chrysosporazines) using an integrated platform of; (i) miniaturized 24-well plate cultivation profiling (MATRIX), (ii) UPLC-DAD and UPLC-QTOF-MS/MS (GNPS) chemical profiling, and; (iii) precursor directed biosynthesis to manipulate in situ biosynthetic performance and outputs; to detect two new fungal producers of chrysosporazines. Chemical analysis of an optimized PDA solid phase cultivation of Aspergillus sp. CMB-F661 yielded the new regioisomeric chrysosporazine T (1) and U (2), while precursor directed cultivation amplified production and yielded the very minor new natural products azachrysosporazine T1 (3) and U1 (4), and the new unnatural analogues neochrysosporazine R (5) and S (6). Likewise, chemical analysis of an optimized M1 solid phase cultivation of Spiromastix sp. CMB-F455 lead to the GNPS detection of multiple chrysosporazines and brasiliamides, and the isolation and structure elucidation of chrysosporazine D (7) and brasiliamide A (8). Access to new chrysosporazine regioisomers facilitated structure activity relationship investigations to better define the chrysosporazine P-glycoprotein (P-gp) inhibitory pharmacophore, which is exceptionally potent at reversing doxorubrin resistance in P-gp over expressing colon carcinoma cells (SW600 Ad300).


Asunto(s)
Peces , Espectrometría de Masas en Tándem , Subfamilia B de Transportador de Casetes de Unión a ATP , Animales , Aspergillus , Australia , Glicoproteínas , Piperazina
16.
J Nat Prod ; 85(6): 1641-1657, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35640100

RESUMEN

Chemical investigation of Australian pasture plant-derived Streptomyces sp. CMB-PB041, supported by miniaturized cultivation profiling and molecular network analysis, led to the isolation and characterization of 13 new macrocyclic spirotetronates, glenthmycins A-M (1-13), with structures assigned by detailed spectroscopic analysis, chemical degradation and derivatization, and mechanistic and biosynthetic considerations. Hydrolysis of glenthmycin B (2) yielded the aglycone 14, whose structure and absolute configuration were secured by X-ray analysis, along with the unexpected amino sugar residues glenthose lactams A (15) and B (16), with Mosher analysis of 15 facilitating assignment of absolute configurations of the amino sugar. While the glenthmycins proved to be acid stable, treatment of isomeric glenthmycins (i.e., 3, 6, and 8) with base catalyzed rapid intramolecular trans-esterification to regio-isomeric mixtures (i.e., 3 + 6 + 8). Exposure of 5 to base achieved the same intramolecular trans-esterification and was instrumental in detecting and tentatively identifying two additional minor co-metabolites, glenthmycins N (19) and O (20). A structure-activity relationship analysis carried out on 1-13 and the semisynthetic analogues 14 and 21-26 revealed a promising Gram +ve antibacterial pharmacophore, effective against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), but with no detectable cytotoxicity to eukaryotic cells (i.e., fungal and human carcinoma). Of particular note, the semisynthetic analogue glenthmycin K 9-valerate (26) was unique among glenthmycins in potently inhibiting growth of the full panel of Gram +ve pathogens (IC50 0.2-1.6 µM). We conclude with an observation that any future evaluation of the antibacterial potential of glenthmycins and related macrocyclic spirotetronates may do well to include important soil-derived Gram +ve pathogens, such as Bacillus anthrax, Clostridium botulinum, and Rhodococcus equi, the causative agents of anthrax, botulism, and livestock pneumonia.


Asunto(s)
Carbunco , Staphylococcus aureus Resistente a Meticilina , Policétidos , Streptomyces , Amino Azúcares , Antibacterianos/química , Australia , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Policétidos/metabolismo , Policétidos/farmacología , Streptomyces/química
17.
Int J Pharm ; 617: 121614, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35245637

RESUMEN

Currently there is no approved vaccine to prevent and/or treat group A Streptococcus (GAS) infection. With increasing reports of GAS antibiotic resistance, vaccine adjuvants and targeted delivery systems which induce a strong immune response are a widely acknowledged unmet need. Through extensive structure-activity studies, we investigated a cyclic decapeptide physically mixed with a GAS B cell peptide epitope (J8), a universal T helper epitope (PADRE), and different synthetic lipidic moieties as a conceivable self-adjuvanting GAS vaccine. We explored the structure (orientation)-relationship of the chemically-conjugated B cell epitope and T helper epitope peptide as part of this physically-mixed vaccine. Following in vivo assessment in mice, these cyclic lipopeptide vaccines showed successful induction of J8-specific systemic IgG antibodies when administered subcutaneously without additional adjuvant. Interestingly, an exposed C-terminus of the GAS B cell epitope and a 16-carbon alpha-amino fatty acid lipid was required for strong immunoreactivity, capable of effectively opsonising multiple strains of clinically-isolated GAS bacteria. Physicochemical assessment proved the alpha helix structure of the GAS B cell epitope was retained, impacting particle self-assembly and vaccine immunoreactivity. This study showed the capability for a self-adjuvanting cyclic delivery system to act as a vehicle for the delivery of GAS peptide antigens to treat GAS infection.


Asunto(s)
Streptococcus pyogenes , Vacunas , Adyuvantes Inmunológicos/farmacología , Animales , Lípidos/química , Ratones , Péptidos Cíclicos/farmacología , Relación Estructura-Actividad , Vacunas/farmacología , Vacunas de Subunidad
18.
J Nat Prod ; 85(2): 337-344, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35073486

RESUMEN

Chemical investigations into solid phase cultivations of an Australian sheep station pasture plant derived Streptomyces sp. CMB-PB042 yielded the rare enamine naphthopyranoquinones BE-54238A (1) and BE-54238B (2), together with four new analogues, glenthenamines B-D (4-6) and F (8), and two handling artifacts, glenthenamines A (3) and E (7). Single-crystal X-ray analyses of 1 and 2 resolved configurational ambiguities in the scientific literature, while detailed spectroscopic analysis and biosynthetic considerations assigned structures inclusive of absolute configuration to 3-8. We propose a plausible sequence of biosynthetic transformations linking structural and configurational features of 1-8 and apply a novel Schiff base "fishing" approach to detect a key deoxyaminosugar precursor. These enamine naphthopyranoquinones disclose a new P-gp inhibitory pharmacophore capable of reversing doxorubicin resistance in P-gp overexpressing colon carcinoma cells.


Asunto(s)
Neoplasias del Colon , Streptomyces , Animales , Australia , Estructura Molecular , Bases de Schiff , Ovinos , Streptomyces/química
19.
J Med Chem ; 65(3): 2610-2622, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35067062

RESUMEN

Upregulation of ATP binding cassette (ABC) transporter efflux pumps (i.e. P-glycoprotein, P-gp) can impart multidrug resistance, rendering many chemotherapeutics ineffective and seriously limiting treatment regimes. While ABC transporters remain an attractive target for therapeutic intervention, the development of clinically useful small-molecule inhibitors has proved challenging. In this report, we describe the structure-activity relationship (SAR) analysis of a newly discovered P-gp inhibitory pharmacophore, phenylpropanoid piperazine chrysosporazines, produced by co-isolated marine-derived fungi. In the absence of any total syntheses, we apply an innovative precursor-directed biosynthesis strategy that successfully repurposed fungal biosynthetic output, allowing us to isolate, characterize, and identify the structurally diverse neochrysosporazines A-Q. SAR analysis utilizing all known (and new) neochrysosporazines, chrysosporazines, and azachrysosporazines, plus semi-synthetic analogues, established the key structure requirements for the P-gp inhibitory pharmacophore, and, in addition, identified non-essential sites that allow for the design of affinity and other conjugated probes.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Antineoplásicos/farmacología , Benzodioxoles/farmacología , Piperazinas/farmacología , Antineoplásicos/química , Benzodioxoles/química , Línea Celular Tumoral , Chrysosporium/química , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Piperazinas/química , Relación Estructura-Actividad
20.
J Appl Microbiol ; 132(4): 3081-3088, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34927315

RESUMEN

AIMS: The control of Xanthomonas citri subsp. citri (X. citri), causal agent of citrus canker, relies heavily on integrated agricultural practices involving the use of copper-based chemicals. Considering the need for alternatives to control this disease and the potential of fungi from extreme environments as producers of bioactive metabolites, we isolated and identified a bioactive compound from Penicillium sp. CRM 1540 isolated from Antarctica marine sediment. METHODS AND RESULTS: The potential of compound as an antibacterial agent against X. citri was assessed through in vitro and greenhouse experiments. Molecular taxonomy indicates that this fungus is a possible new species of Penicillium. Results revealed 90% bacterial inhibition in vitro at 25 µg ml- 1 and a decrease in 75.37% of citrus canker symptoms emergency in vivo in treated leaves of Citrus sinensis (L.) Osbeck considering the number of lesions per cm2 (p < 0.05) in comparison with the control. The structure of the active agent was identified as penicillic acid based on a detailed spectroscopic analysis. CONCLUSION: Penicillic acid can be an alternative against citrus canker. SIGNIFICANCE AND IMPACT OF STUDY: Research into extremophile micro-organisms can identify molecules with biotechnological potential and alternatives to current agricultural practices.


Asunto(s)
Citrus sinensis , Citrus , Xanthomonas , Citrus/microbiología , Ácido Penicílico , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...